MONOTONE AND PSEUDO-MONOTONE EQUILIBRIUM PROBLEMS IN HADAMARD SPACES

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monotone and Pseudo-monotone Equilibrium Problems in Hadamard Spaces

As a continuation of previous work of the first author with S. Ranjbar [26] on a special form of variational inequalities in Hadamard spaces, in this paper we study equilibrium problems in Hadamard spaces, which extend variational inequalities and many other problems in nonlinear analysis. In this paper, first we study the existence of solutions of equilibrium problems associated with pseudomon...

متن کامل

A hybrid ergodic-splitting method for pseudo-monotone equilibrium problems

In this paper, we consider the equilibrium problem for a pseudo-monotone function. For solving this problem, a hybrid ergodic-splitting method is proposed. We decompose the equilibrium function into two functions and then solve auxiliary problems for each decomposition function separately. Under pseudo-monotonicity of the equilibrium function and some additional assumptions, we prove that the s...

متن کامل

Monotone Relations and Network Equilibrium

Conditions for network equilibrium are developed in terms of vectorvalued flows and potentials and generalized resistance relations. The extent to which the equilibrium can be expressed by a variational inequality or characterized by optimization is analyzed. Emphasis is placed on maximal monotone relations, especially subgradient relations associated with convex optimization.

متن کامل

Monotone variational inequalities, generalized equilibrium problems and fixed point methods

In this paper, we study monotone variational inequalities and generalized equilibrium problems. Weak convergence theorems are established based on a fixed point method in the framework of Hilbert spaces.

متن کامل

On the Monotone Mappings in CAT(0) Spaces

In this paper, we first introduce a monotone mapping and its resolvent in general metric spaces.Then, we give two new iterative methods  by combining the resolvent method with Halpern's iterative method and viscosity approximation method for  finding a fixed point of monotone mappings and a solution of variational inequalities. We prove convergence theorems of the proposed iterations  in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Australian Mathematical Society

سال: 2019

ISSN: 1446-7887,1446-8107

DOI: 10.1017/s1446788719000041